energy quantities quoted in section III which differ only in the second place in electron volts, must be viewed with some degree of caution since the molecular geometries were not optimized for any of the molecules treated here. However, we are very encouraged by the results
obtained thus far and are presently analyzing CC bonds in hydrocarbons in the same way. We also are in the process of making models for the LMO's themselves and studying different classes of or ganic compounds, such as fluorides and carbonyls.

Theoretical Reaction Coordinate for the Methyl

 Isocyanide Isomerization ${ }^{1}$Dean H. Liskow, Charles F. Bender, and Henry F. Schaefer III*
Contribution from the Department of Chemistry and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720. Received January 14, 1971

Abstract

A b\) initio self-consistent-field calculations have been carried out to approximately determine the minimum energy path for the $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$ reaction. A set of four s and two p functions on C and N and two s functions on H was used. The predicted exothermicity was $17.4 \mathrm{kcal} / \mathrm{mol}$, in reasonable agreement with Benson's empirical estimate of 15 kcal . The calculated barrier height was 58.8 kcal compared to Rabinovitch's experimental value of 38.4 kcal. This difference is ascribed to an expectation that electron correlation will be greater for the transition state than for either $\mathrm{CH}_{3} \mathrm{NC}^{\text {or }} \mathrm{CH}_{3} \mathrm{CN}$. The calculations differ from the extended Hückel treatment of Van Dine and Hoffmann in that we predict the CH_{3} group to remain pyramidal (HCX angle 106°) at the saddle point. The planar CH_{3} structure lies 14 kcal higher in energy. The question of changes in "charge" on the methyl carbon is investigated in detail. Mulliken atomic populations suggest that the charge on the methyl carbon at the transition state is intermediate between $\mathrm{CH}_{3} \mathrm{NC}$ and $\mathrm{CH}_{3} \mathrm{CN}$. This is completely consistent with the conclusions of Casanova, Werner, and Schuster. However, it is suggested that several other properties (including the potential at each nucleus, the 1s electron binding energies, and the electric field gradients) give a more reliable picture of the changes in electronic structure. These properties suggest that at the transition state there is somewhat more charge on the methyl carbon than in either the product or reactant. The unfavored transition state, in which the CH_{3} group is forced to be planar, has a large amount of charge on the methyl carbon, resulting in an electronic structure approaching $\left[\mathrm{CH}_{3}{ }^{+}\right]\left[\mathrm{CN}^{-}\right]$.

The $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$ reaction is one of the simplest examples of a unimolecular isomerization. The kinetics of this reaction have been studied exhaustively by Rabinovitch and coworkers ${ }^{2,3}$ over the past decade. Rabinovitch's work has yielded a wealth of information concerning the mechanism of the isomerization, energy transfer, and the suitability of various theoretical models ${ }^{4}$ (e.g., RRKM) for describing the kinetics of the reaction. Recently, Harris and Bunker ${ }^{5}$ have taken another significant step toward an understanding of the dynamics of the $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$ reaction. Using a model potential energy surface, Harris and Bunker ${ }^{\text {ja }}$ carried out classical trajectory studies ${ }^{6}$ of the isocyanide isomerization. Their most important conclusion was that, given an initial internal energy of $150-300 \mathrm{kcal} / \mathrm{mol}$, intramolecular energy transfer into the reaction coordinate probably does not occur for times t less than $10^{-10} \mathrm{sec}$. In a recent communication, ${ }^{\text {sb }}$ Harris and Bunker emphasize the non-RRKM behavior of $\mathrm{CH}_{3} \mathrm{NC}$.

[^0]It seems clear that an accurate a priori potential energy surface for the $\mathrm{CH}_{3} \mathrm{CN}$ isomerization would be of great value in providing insight concerning the reaction dynamics. The first step in this direction was taken by Van Dine and Hoffmann, ${ }^{7}$ who constructed a $\mathrm{CH}_{3} \mathrm{CN}$ potential energy surface from extended Hückel calculations. Van Dine and Hoffmann predicted the saddle point (transition state) to occur for a nearly isosceles CNC triangular arrangement. Their calculated barrier height (activation energy) was $40.8 \mathrm{kcal} / \mathrm{mol}$, in surprisingly good agreement with experiment, $38.4 \mathrm{kcal} / \mathrm{mol}$. Another interesting feature of the Van Dine-Hoffmann calculations is the prediction that the methyl group becomes planar ($120^{\circ} \mathrm{HCH}$ angle) at the saddle point. In the isolated $\mathrm{CH}_{3} \mathrm{CN}$ molecule, the HCC angle is 109.5°.
In the present paper, we take a second step toward obtaining a reliable potential surface for $\mathrm{CH}_{3} \mathrm{NC} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CN}$, a series of nonempirical self-consistent-field calculations. We began this study with the expectation that the Hartree-Fock approximation would be inherently incapable of describing the potential surface in a quantitatively correct manner. In particular, one expects the correlation energy to be significantly greater near the saddle point geometry than for either the reactant $\mathrm{CH}_{3} \mathrm{NC}$ or the product $\mathrm{CH}_{3} \mathrm{CN} .8$ Thus we can

[^1]Table I. Summary of Self-Consistent-Field Energies for the Methyı Isocyanide Rearrangement ${ }^{a}$

Description	θ, deg	R	Other geometrical parameters	E, hartrees	E, kcal
$\mathrm{CH}_{3} \mathrm{NC}$	180	1.971	Standard Standard	-131.8507	0.0
Saddle point	135	1.864	1.802	$R(\mathrm{CN})=1.203$, $\theta(\mathrm{HCX})=106^{\circ}$ Rotated saddle point	90

${ }^{a}$ Distances are given in Ångströms; θ and R are defined in Figure 1.
predict with little hesitation that the Hartree-Fock barrier height will be significantly higher than the experimental activation energy. However, it is now well established that self-consistent-field (SCF) calculations, even using relatively small basis sets, yield rather reliable molecular geometries. ${ }^{9}$ Therefore we expect the SCF minimum energy path or reaction coordinate to be rather reliable. At some later time we hope to report an $a b$ initio potential surface explicitly including electron correlation for the methyl isocyanide rearrangement.

Basis Set and Computational Details

The calculations were carried out in terms of the primitive Gaussian basis sets of Huzinaga, ${ }^{10}$ ($9 \mathrm{~s}, 5 \mathrm{p}$) for carbon and nitrogen and (4s) for hydrogen. Following Dunning, ${ }^{11}$ these C and N basis sets were optimally contracted to four s and two p functions. The hydrogen (4s) basis was similarly contracted to (2s). Thus for $\mathrm{CH}_{3} \mathrm{CN}, 84$ primitive Gaussians were used to form 36 contracted functions in this "double ζ " basis set. Based on previous experience, ${ }^{12.18}$ we expect the present basis set to yield total SCF energies for $\mathrm{CH}_{3} \mathrm{CN}$ about 0.15 hartree above the true (complete basis set) HartreeFock energies.

On the basis of previous calculations on the FH_{2} potential surface, ${ }^{14}$ we expect certain errors in the shape of the predicted $\mathrm{CH}_{3} \mathrm{CN}$ surface. However, these errors may be due more to the neglect of electron correlation than to the limited size of our basis set. For the F + $\mathrm{H}_{2} \rightarrow \mathrm{FH}+\mathrm{H}$ reaction, the SCF barrier height (using a basis comparable to the present one) is $34.3 \mathrm{kcal} / \mathrm{mol}$, as opposed to the experimental activation energy, 1.7 kcal. With this same basis, configuration interaction calculations yield a barrier height of 5.7 kcal. ${ }^{14}$ However, the estimated Hartree-Fock barrier height is 15 $\mathrm{kcal} / \mathrm{mol}$. We see that in order to accurately describe the FH_{2} surface, the incorporation of correlation effects using a modest basis set is more effective than going to a very large basis within the Hartree-Fock approximation.
For a number of geometries (e.g., ordinary $\mathrm{CH}_{5} \mathrm{CN}$), the SCF procedure consistently diverged, even though several different sets of starting orbitals were used.

[^2]

Figure 1. Coordinate system used to describe $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$.

This problem was eventually solved using the very effective extrapolation procedure of Winter and Dunning. ${ }^{15}$

Geometries Considered

A complete potential energy surface for $\mathrm{CH}_{3} \mathrm{CN}$ would involve $[3(6)-6]=12$ independent geometrical parameters. The variation of these 12 parameters is clearly beyond the feasibility of the present $a b$ initio investigation. In fact, we have carried out a very restricted series of geometry variations within this 12 dimensional space.

Figure 1 helps to illustrate the geometries considered in the present work. Following Van Dine and Hoffmann, ${ }^{7}$ the reaction coordinate was taken to be the angle θ describing the rotation of the CN group about its center of mass. The CN center of mass is constrained to lie on the line which is perpendicular to and passes through the center of the HHH triangle. For all values of θ considered $\left(0,45,90,135\right.$, and 180°) the distance R between the methyl carbon and the CN center of mass was varied. The two parameters θ and R are thus assumed to be the most important in the determination of the reaction coordinate.
Other restrictions adopted in the selection of geometries included the following. (a) The CH_{3} group was required to have at least C_{30} local symmetry. (b) The three CH distances were fixed at $1.10 \AA$. In $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{NC}$, this bond distance is 1.103 and $1.101 \AA \AA^{16}$ (c) Except at $\theta=90^{\circ}$, the CN distance was fixed at 1.16 \AA. For comparison, this distance is $1.157 \AA$ in $\mathrm{CH}_{3} \mathrm{CN}$ and $1.166 \AA$ in $\mathrm{CH}_{3} \mathrm{NC}$. (d) Except at $\theta=90^{\circ}$, the HCX angle was fixed at 110°. X represents the position of the CN center of mass. In $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{NC}$, this angle is ${ }^{16} 109^{\circ} 30^{\prime}$ and $109^{\circ} 7^{\prime}$. (e) Except at 90°, the C atom was held eclipsed with respect to one of the three H atoms. Thus the nitrogen atom is staggered with respect to the other two H atoms.

[^3]

Figure 2. Three-dimensional perspectives of the molecular geometry along the reaction coordinate for $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$: (a) $\mathrm{CH}_{3} \mathrm{NC}, \theta=180^{\circ}, E=0.0 \mathrm{kcal}$; (b) $\theta 135^{\circ}, E=29.7 \mathrm{kcal}$; (c) approximate saddle point, $\theta=90^{\circ}, E=58.8 \mathrm{kcal}$; (d) $\theta=45^{\circ}$, $E=33.1 \mathrm{kcal}$; (e) $\mathrm{CH}_{3} \mathrm{CN}, \theta=0^{\circ}, E=-17.4 \mathrm{kcal}$.

Features of the Reaction Coordinate

Our results are summarized in Table I. Five points on the reaction coordinate are indicated graphically in Figure 2. The theoretical exothermicity is seen to be $17.4 \mathrm{kcal} / \mathrm{mol}$. Although the energy difference between $\mathrm{CH}_{3} \mathrm{NC}$ and $\mathrm{CH}_{3} \mathrm{CN}$ is not known, Benson ${ }^{17}$ has empirically estimated a value of $15 \mathrm{kcal} / \mathrm{mol}$. Since the correlation energies of $\mathrm{CH}_{3} \mathrm{NC}$ and $\mathrm{CH}_{3} \mathrm{CN}$ are likely to be nearly equal, our predicted value should be fairly reliable.
(17) S. W. Benson, J. Chem. Educ., 42, 502 (1965).

Table I shows the predicted activation energy to be 58.8 kcal , or 1.5 times the experimental value of 38.4 kcal . Since we expect a single-configuration wave function to be a poorer approximation for the saddle point geometry than for either the reactant or product, this result is qualitatively reasonable. As discussed above, we expect that a modest amount of configuration interaction ${ }^{14}$ will bring the predicted activation energy into much better agreement with experiment.

A feature of considerable interest is the saddle point geometry. In the present work, we have assumed that the saddle point occurs for $\theta=90^{\circ}$. Reasons for this assumption are (a) the calculated energies for $\theta=45^{\circ}$ and $\theta=135^{\circ}$ are nearly the same, (b) $\theta=90^{\circ}$ is the logical halfway point between $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{NC}$, and (c) the extended Hückel calculations of Van Dine and $\mathrm{Hoffmann}^{7}$ predict $\theta=92^{\circ}$. Therefore, at $\theta=$ 90°, we simultaneously optimized R (see Figure 1), the CN distance, and the HCX bond angle. Our results are seen in Table I and show that the distance between the methyl carbon and the CN center of mass is $1.802 \AA$, significantly shorter than in either $\mathrm{CH}_{3} \mathrm{NC}$ or $\mathrm{CH}_{3} \mathrm{CN}$. At the saddle point the CN distance is predicted to be $1.203 \AA$, slightly longer ($0.03-0.04 \AA$) than in $\mathrm{CH}_{3} \mathrm{NC}$ and $\mathrm{CH}_{3} \mathrm{CN}$. The HCX angle is predicted to be 106° at the saddle point, only about 3° less than in the two stable molecules.
There is one feature concerning which the present potential surface differs qualitatively from the extended Hückel surface of Van Dine and Hoffmann: namely, their prediction that the CH_{3} group is nearly planar at the saddle point. Table I shows clearly that the present calculations predict a nearly tetrahedral CH_{3} group. For comparison with the Van Dine-Hoffmann results we carried out several additional calculations with the CH_{3} group restricted to be planar. With this restraint at $\theta=90^{\circ}$, a much longer optimum distance $R(2.013 \AA)$ was found, in qualitative agreement with Van Dine and Hoffmann. However, our planar CH_{3} saddle point geometry lies at 72.9 kcal , while for $\theta(\mathrm{HCX})=$ 106°, the barrier height is lower, 58.8 kcal .
At the saddle point there is a small barrier to internal rotation. That is, one of the hydrogen atoms may be eclipsed with respect to either the C or N atom of the CN group. All but two of the calculations reported here were carried out for the carbon atom eclipsed with respect to H . After the variation of geometrical parameters at the saddle point was completed, a single calculation was carried out with the nitrogen atom eclipsed; that is, in Figure 1, the upper H, the two C's, and the N atom all lie in the same plane. As Table I shows, this conformation lies 0.8 kcal below the arrangement in which the carbon atom is eclipsed. Thus, 0.8 kcal would appear to be a reasonable value for this small barrier.

Interpretive Aspects

A point of considerable interest concerning the $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$ reaction is the change in electron distribution during the rearrangement. In addition to the well-known studies of Rabinovitch, ${ }^{2,3}$ the experimental work of Casanova, Werner, and Schuster ${ }^{18}$ is pertinent in this regard. By studying a variety of

[^4]reactions RNC \rightarrow RCN, Casanova and coworkers ${ }^{18}$ were able to conclude that "the bond-breaking and bond-making processes are essentially synchronous." This implies, in a simple point-charge model, that the "charge" on the CH_{3} group is nearly constant during the $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$ rearrangement.

Van Dine and Hoffmann ${ }^{7}$ have discussed the change in atomic charges (from Mulliken population analyses ${ }^{9}$) based on their extended Hückel calculations. However, they arrive at rather different conclusions than Casanova and coworkers. ${ }^{18}$ In particular, Van Dine and Hoffmann find the charge at the methyl carbon to be +0.19 for $\mathrm{CH}_{3} \mathrm{NC}$ and +0.02 for $\mathrm{CH}_{3} \mathrm{CN}$, but +0.42 for the transtition state geometry. That is, they find a significant increase in positive charge at the methyl carbon in the transition state. Thus Van Dine and Hoffmann conclude, in disagreement with Casanova, ${ }^{18}$ that there is definite ionic character, $\left[\mathrm{CH}_{3}{ }^{+0.59}\right]$ [$\mathrm{CN}^{-0.59}$], at the saddle point geometry. Since it is generally accepted that carbonium ions have trigonal (e.g., planar $\mathrm{CH}_{3}{ }^{+}$) geometry, Van Dine and Hoffmann were not surprised to find the methyl group to be predicted planar in the transition state from their extended Hückel calculations.

Table II shows population analyses extracted from

Table II. Population Analyses and Potential Calculated at Each Nucleus in $\mathrm{CH}_{3} \mathrm{CN}$

	$\mathrm{CH}_{3} \mathrm{NC}$	Saddle point, $\begin{gathered} \theta(\mathrm{HCX}) \\ 106^{\circ} \end{gathered}=$	Planar saddle point, $\theta(\mathrm{HCX})=$ 90°	$\mathrm{CH}_{3} \mathrm{CN}$
Atomic Charges				
H	0.22	0.26	0.28	0.23
$\mathrm{C}_{\text {methyl }}$	-0.41	-0. 52	-0.43	-0.58
N	-0.20	-0.21	-0.28	-0.10
C	-0.07	-0.01	-0.12	-0.02
Potentials				
H	-1.062	-1.032	-0.999	-1.048
$\mathrm{C}_{\text {methyl }}$	-14.6463	-14.6277	-14.6071	-14.6661
N	-18.3329	-18.3274	-18.3526	-18.3408
C	-14.6965	-14.6913	-14.7163	-14.6783

our wave functions at four geometries. In addition to the reactant, saddle point $\left(\theta(\mathrm{HCX})=106^{\circ}\right)$, and product, a population analysis is included for the transition state constrained to have a planar CH_{3} group. Again, it should be stressed that our calculations (see Table I) predict the true transition state to have a nonplanar CH_{3} arrangement and the planar transition state to lie $14.1 \mathrm{kcal} / \mathrm{mol}$ higher in energy. Table II shows that the present population analyses are consistent with the conclusions of Casanova, Werner, and Schuster. ${ }^{18}$ That is, the charge on the methyl carbon progresses from -0.41 for $\mathrm{CH}_{3} \mathrm{NC}$ to -0.52 at the saddle point to -0.58 for $\mathrm{CH}_{3} \mathrm{CN}$. Similarly the charge on the CN group varies from -0.27 to -0.22 to -0.12 . That is, the $a b$ initio saddle point is even less ionic than ordinary $\mathrm{CH}_{3} \mathrm{NC}$. However, if we constrain the CH_{3} group to be planar (at a cost of 14.1 kcal), Table III shows that the transition state does become more ionic, $\left[\mathrm{CH}_{3}+0.40\right]\left[\mathrm{CN}^{-0.40}\right]$. It should be noted that our calculated populations for $\mathrm{CH}_{3} \mathrm{CN}$ and

Table III. Orbital Energies (in Hartrees) for Four $\mathrm{CH}_{3} \mathrm{CN}$ Geometries

	Lowest energy $\theta(\mathrm{HCX})$			
	$\mathrm{CH}_{3} \mathrm{~N}$	106°	Planar $\theta(\mathrm{HCX})$ 90°	$\mathrm{CH}_{3} \mathrm{CN}$
$E($ total $)$	-131.8507	-131.7570	-131.7346	-131.8785
$1 \mathrm{a}^{\prime}$	-15.5993	-15.6235	-15.5963	-15.6035
$2 \mathrm{a}^{\prime}$	-11.3136	-11.3371	-11.3675	-11.3061
$3 \mathrm{a}^{\prime}$	-11.3006	-11.3102	-11.2835	-11.2946
$4 \mathrm{a}^{\prime}$	-1.8874	-1.2937	-1.2551	-1.2517
$5 \mathrm{a}^{\prime}$	-1.0341	-0.9772	-0.9927	-1.0400
$6 \mathrm{a}^{\prime}$	-0.7376	-0.6899	-0.6900	-0.6948
$7 \mathrm{a}^{\prime}$	-0.644	-0.5737	-0.5819	-0.681
$8 \mathrm{a}^{\prime}$	-0.4780	-0.5336	-0.4780	-0.5517
$9 \mathrm{a}^{\prime}$	-0.4643	-0.4610	-0.4426	-0.4682
$1 \mathrm{a}^{\prime \prime}$	-0.6414	-0.6413	-0.6689	-0.6281
$2 \mathrm{a}^{\prime \prime}$	-0.4780	-0.4814	-0.4649	-0.4682

$\mathrm{CH}_{3} \mathrm{NC}$ are in qualitative agreement with the earlier $a b$ initio calculations of Clementi and Klint. ${ }^{20}$

The population analysis is an inherently arbitrary method for studying the electron distribution in a molecule. Thus one would like to confirm the qualitative results of the previous paragraph in terms of quantities which are, at least in principle, observable. One observable property which may be nicely correlated with "atomic charges" is the inner shell ionization potential at a particular atom. ${ }^{21,22}$ That is, the greater the inner shell ionization potential, the more positive charge may be thought to reside on the atom in question. A quantity related to the inner shell ionization potential and hence to the concept of atomic charge is the potential at a nucleus. ${ }^{23,24}$ The calculated potentials at each nucleus are seen in Table II, while the orbital energies or Koopmans theorem ionization potentials are given in Table III. In all four calculations the $1 \mathrm{la}^{\prime}$ orbital corresponds to nitrogen 1s. For $\mathrm{CH}_{3} \mathrm{CN}$ the $2 \mathrm{a}^{\prime}$ orbital is the CN carbon and the $3 a^{\prime}$ orbital corresponds to the methyl carbon Is. For $\mathrm{CH}_{3} \mathrm{CN}$ the $2 \mathrm{a}^{\prime}$ orbital is the CN carbon and the $3 a^{\prime}$ orbital corresponds to the methyl carbon 1 s . However, for the other three calculations (first three columns of Table III) the $2 a^{\prime}$ orbital is the methyl carbon 1 s .

There is a one-to-one correspondence between the calculated inner shell ionization potentials and the potential at each nucleus. Limiting ourselves to the point discussed by Casanova, et al., ${ }^{18}$ and by Van Dine and Hoffmann, ${ }^{7}$ the charge at the methyl carbon, the following is implied. (a) The methyl carbon has a greater positive charge (or, if one prefers, a smaller negative charge) in $\mathrm{CH}_{3} \mathrm{NC}$ than in $\mathrm{CH}_{3} \mathrm{CN}$. (b) At the transition state the methyl carbon becomes somewhat more positive than for $\mathrm{CH}_{3} \mathrm{NC}$. (c) At the constrained planar CH_{3} saddle point, the methyl carbon takes on a rather large positive charge, indicating a significant amount of $\left[\mathrm{CH}_{3}{ }^{+}\right]\left[\mathrm{CN}^{-}\right]$character.

[^5]Table IV. Some Molecular Properties (in Atomic Units) for $\mathrm{CH}_{3} \mathrm{CN}^{a}$

	$\mathrm{CH}_{8} \mathrm{NC}$	$\theta(\mathrm{HCX})=106^{\circ}$	$\underset{\theta(\mathrm{HCX})=90^{\circ}}{\mathrm{int}}$	$\mathrm{CH}_{3} \mathrm{CN}$
Dipole Moment				
μ_{v}	$-1.46\left(-1.51 \pm 0.02^{b}\right)$	-1.135	-1.76	$-1.66\left(-1.54 \pm 0.02^{6}\right)$
μ_{z}	0.0	-0.013	-0.009	0.0
Quadrupole Moment Tensor				
$\theta_{x x}$	1.19	0.92	1.31	1.12
$\theta_{y y}$	$-2.39\left(-2.0 \pm 1.2^{\text {c }}\right.$)	2.34	1.89	$-2.24\left(-1.3 \pm 0.9^{c}\right)$
$\theta_{x 2}$	1.19	-3.25	-3.21	1.12
$\theta_{y z}$	0.00	0.01	-0.01	0.00
Second Moments of the Electron Distribution				
$\left\langle x^{2}\right\rangle$	$-19.05\left(-19 \pm 2^{c}\right)$	-19.52	-19.82	$-19.05\left(-19 \pm 1^{c}\right)$
$\left\langle y^{2}\right.$)	$-116.64\left(-116 \pm 2^{\text {c }}\right.$)	-82.75	-90.49	$-126.91\left(-124 \pm 1^{c}\right)$
$\left\langle z^{2}\right\rangle$	$-19.05\left(-19 \pm 2^{\text {c }}\right.$)	-39.00	-39.45	$-19.05\left(-19 \pm 1^{c}\right)$
$\langle y z\rangle$	0.00	-0.02	-0.02	0.00
Electric Field Gradient Tensor at Methyl Carbon				
$q_{x x}$	0.23	0.32	0.46	0.14
$q_{v y}$	-0.46	-0.66	-0.94	-0.28
$q_{z z}$	0.23	0.34	0.48	0.14
$q_{y z}$	0.00	-0.03	-0.03	0.00

${ }^{a}$ For $\mathrm{CH}_{3} \mathrm{NC}$ and $\mathrm{CH}_{3} \mathrm{CN}$ at equilibrium, the y axis contains the CN group. At the saddle point the z axis includes the CN group. Experimental values are in parentheses. ${ }^{b}$ S. N. Ghosh, R. Trambarulo, and W. Cordy, J. Chem. Phys., 21, 308 (1953). ${ }^{c}$ Reference 25.

The above potential-ionization potential picture is not completely consistent with the Mulliken atomic charges in Table II. The primary difference is that the population analysis suggests the methyl carbon has less charge at the saddle point than for $\mathrm{CN}_{3} \mathrm{NC}$. Both analyses agree that the planar saddle point has the most ionic electron distribution. We tend to prefer the potential-ionization potential picture due to the necessary arbitrariness of the population analysis.
To further investigate the changes in electron distribution along the reaction coordinate, several additional molecular properties were computed, some of which are seen in Table IV. The fact that the SCF and experimental dipole moments ${ }^{24}$ for $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{NC}$ agree well is not too surprising since the molecules are quite polar. In general, however, larger basis sets are required for good agreement between SCF and experimental dipole moments. ${ }^{8}$ Interestingly, the calculations predict the transition state to have a smaller dipole moment than $\mathrm{CH}_{3} \mathrm{NC}$ or $\mathrm{CH}_{3} \mathrm{CN}$. This result is consistent with Casanova's conclusions, but not those of Van Dine and Hoffmann. As expected the planar saddle point has a much larger (0.41 atomic unit $=1.0$ debye) dipole moment. The calculated electric field gradient tensor shows the same type of behavior as the potentials at each nucleus and the inner shell electron binding energies. That is, the largest q values are found for the planar CH_{3} arrangement and the smallest values for $\mathrm{CH}_{3} \mathrm{CN}$. The transition state field gradient tensor is intermediate between that of $\mathrm{CH}_{3} \mathrm{NC}$ and the planar saddle point. Finally, it should be pointed out that our calculated quadrupole moment elements along the molecular axis are in good agree-
ment with the experimental values of Pochan, Shoemaker, Stone, and Flygare. ${ }^{25}$

Concluding Remarks

The most important finding of our theoretical study is that the transition state or saddle point for the $\mathrm{CH}_{3} \mathrm{NC}$ $\rightarrow \mathrm{CH}_{3} \mathrm{CN}$ isomerization involves a pyramidal CH_{3} group (HCX angle 106°). The planar methyl saddle point is predicted to lie 14.1 kcal higher and a variety of calculated molecular properties indicate significant ionic $\left[\mathrm{CH}_{3}+\right]\left[\mathrm{CN}^{-}\right]$character. The question of change in "atomic charge" on the methyl carbon along the reaction coordinate is investigated by a number of means. The most obvious conclusion is that the predicted transition state is far less ionic (less charge on methyl carbon) than the planar CH_{3} structure mentioned above. Mulliken population analyses suggest that the electron distribution changes smoothly between $\mathrm{CH}_{3} \mathrm{NC}$ and $\mathrm{CH}_{3} \mathrm{CN}$. However, more reliable indicators, namely calculated potentials at each nucleus, inner shell ionization potentials, and electric field gradients, suggest that the transition state involves a methyl carbon somewhat more positively charged than in either $\mathrm{CH}_{3} \mathrm{NC}$ or $\mathrm{CH}_{3} \mathrm{CN}$.

Acknowledgments. Helpful discussions with Professors Andrew Streitwieser and Roald Hoffmann are sincerely appreciated. The wise counsel of Dr. Nicholas W. Winter concerning the convergence of SCF calculations is gratefully acknowledged. Mr. Peter K. Pearson generated via computer the pictures of $\mathrm{CH}_{3} \mathrm{CN}$ along the reaction coordinate.
(25) J. M. Pochan, R. L. Schoemaker, R. G. Stone, and W. H. Flygare, J. Chem. Phys., 52, 2478 (1970).

[^0]: (1) Work performed under the auspices of the U.S. Atomic Energy Commission.
 (2) (a) F. W. Schneider and B. S. Rabinovitch, J. Amer. Chem. Soc., 84, 4215 (1962); (b) B. S. Rabinovitch, P. W. Gilderson, and F. W. Schneider, ibid., 87,158 (1965).
 (3) S. C. Chan, B, S. Rabinovitch, J. T. Bryant, L. D. Spicer, T. Fujimoto, Y. N. Lin, and S. P. Pavlou, J. Phys, Chem., 74, 3160 (1970).
 (4) H. S. Johnston, "Gas Phase Reaction Rate Theory," Ronald Press, New York, N, Y., 1966.
 (5) (a) H. H. Harris and D. L. Bunker, 161st National Meeting of the American Chemical Society, Los Angeles, Calif., 1971, Physical Chemistry Abstract No. 82; (b) Chem. Phys. Lett., 11, 433 (1971).
 (6) M. Karplus in "Molecular Beams and Reaction Kinetics," Ch. Schlier, Ed., Academic Press, New York, N. Y., 1970.

[^1]: (7) G. W. Van Dine and R. Hoffmann, J. Amer. Chem. Soc., 90, 3227 (1968).
 (8) H. F. Schaefer, "The Electronic Structure of Atoms and Molecules: A Survey of Rigorous Quantum Mechanical Results,' Addi-son-Wesley, Reading, Mass., Feb 1972.

[^2]: (9) M. D. Newton, W. A. Lathan, W. J. Hehre, and John A. Pople, J. Chem. Phys., 52, 4064 (1970).
 (10) S. Huzinaga, ibid., 42, 1293 (1965).
 (11) T. H. Dunning, ibid., 53, 2823 (1970).
 (12) A. D. McLean and M. Yoshimine, Int. J. Quantum Chem., 1S, 313 (1967).
 (13) A. J. Duke and R. F. W. Bader, Chem. Phys. Lett., 10, 631 (1971).
 (14) C. F. Bender, P. K. Pearson, S. V. O'Neil, and H. F. Schaefer, unpublished results.

[^3]: (15) N. W. Winter and T. H. Dunning, Chem. Phys. Lett., 8, 169 (1971).
 (16) C. C. Costain, J. Chem. Phys., 29, 864 (1958).

[^4]: (18) J. Casanova, N. D. Werner, and R. E. Schuster, J. Org. Chem., 31, 3473 (1966).

[^5]: (20) E. Clementi and D. Klint, ibid., 50, 4899 (1969).
 (21) J. M. Hollander, D. N. Hendrickson, and W. L. Jolly, ibid., 49, 3315 (1968).
 (22) K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hemrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and Y. Baer, "ESCA Applied to Free Molecules," North-Holland, Publishing Co., Amsterdam, 1969.
 (23) H. Basch, Chem. Phys. Lett., 5, 337 (1970).
 (24) M. E. Schwarz, ibid., 6, 631 (1970).

